مقطع: دکتری تخصصی (PhD)     سال: 1402

رشته: مدیریت – مدیریت صنعتی ـ تحقیق در عملیات

پدیدآور: سعید ضرغامی استاد راهنما: مقصود امیری استاد مشاور: احمد ماکویی ؛ محمد تقی تقوی فرد

دانشگاه علامه طباطبائی، دانشکده مدیریت و حسابداری

در کنار سیاست های توسعه ای، سیاست های انقباضی نیز به دلیل تغییرات جمعیتی، ظهور تکنولوژی های جدید و تغییر در شرایط اقتصادی و اجتماعی صورت می گیرد. در حوزه علم مکان یابی نیز مکان زدایی از نوع سیاست های کاهشی می باشد. در این مطالعه مدل مکان زدایی برای تسهیلات با یک نوع کارکرد ولی با برند های مختلف مد نظر بوده است. رویکرد عادلانه با استفاده از محدودیت های فازی برای برقراری عدالت نسبی و رویه ای برای حفظ تسهیلات و کارکنان آن ها با برند های مختلف صورت گرفته است. برای رضایت مندی مشتریان از معیار های صف و رویکرد عادلانه مرکز برای تخصیص مشتری در شعاع پوشش استفاده شده است. برای تعیین اهمیت و وزن تسهیلات در فاز اول تحقیق با استفاده از تحلیل پوششی داده ها، امتیاز کارایی شعب بدست آمده و به عنوان اهمیت تسهیلات در نظر گرفته شده است. همچنین، در توسعه مدل اهداف مختلفی که می توانست از نظر گروه های مختلف ذی نفعان مورد توجه باشد، مد نظر قرار گرفت. مدل از نوع برنامه ریزی عدد صحیح مختلط با متغیر صفر و یک بوده است و در مدل نهایی با در نظر گرفتن مسئله صف و ورود مشتریان، با محدودیت غیر خطی پیچیده مواجه شد که با توجه به بررسی ادبیات و نبود راه حل دقیق برای این مسائل، از روش فرا ابتکاری NSGA-II با طول رشته کروموزوم متغیر برای حل مسئله استفاده شد. مثال های عددی با توجه به سیاست های اخیر دولت ج.ا.ایران مبنی بر ادغام چندین بانک با چند برند مختلف در گام های توسعه مدل مورد توجه قرار گرفت.

مکان زدایی/ delocation , عادلانه/ faness , صف/ Queuing , محدودیت فازی/ fuzzy constraints , تحلیل پوششی داده ها/ data envelopment analysis , کاهش متغیر/ variable reduction , الگوریتم ژنتیک با جواب های غیر مسلط-2/ NSGA-II Algorithm

فصل1. کلیات تحقیق 1 1-1. مقدمه 2 1-2. بیان مسئله 3 1-3. اهمیت و ضرورت انجام تحقیق 6 1-3-1. ضرورت و اهمیت تحقیق از بعد نظری 7 1-3-2. ضرورت و اهمیت تحقیق از بعد کاربردی 8 1-3-3. ضرورت و اهمیت تحقیق از بعد قانونی و برنامه ای 8 1-4. اهداف تحقیق 8 1-4-1. هدف اصلی تحقیق 9 1-4-2. اهداف فرعی تحقیق 9 1-5. نام بهره وران ( سازمان ها، صنایع و یا گروه های ذی نفع) 9 1-6. مفروضات تحقیق 9 1-7. پرسش های تحقیق 10 1-7-1. پرسش اصلی تحقیق 10 1-7-2. پرسش های فرعی تحقیق 10 1-8. نوآوری های تحقیق 11 1-9. روش شناسی تحقیق 11 1-10. جامعه آماری، روش نمونه گیری و اندازه نمونه 12 1-11. روش ها و ابزار تجزیه و تحلیل داده ها 12 1-11-1. مدل سازی ریاضی 12 1-12. تعریف واژه ها و اصطلاحات فنی و تخصصی 12 1-13. فرایند اجرایی تحقیق 13 1-14. فرایند توسعه مدل ریاضی (چکیده تصویری ) 15 فصل2. مبانی نظری و پیشینه تحقیق 16 2-1. مقدمه 17 2-2. مدل های عمومی مکان یابی 17 2-2-1. مسئله P- میانه 17 2-2-2. مسئله پوشش 18 2-2-3. مسئله P – مرکز 19 2-3. مکان زدایی 19 2-4. بررسی چند مدل های ریاضی در مکان زدایی : 22 2-4-1. باز کردن و بستن تسهیلات را بصورت همزمان بر اساس محدودیت بودجه (Wang et al., 2003) 22 2-4-2. ادغام تسهیلات (مدارس) در سیستم آموزشی ایتالیا (Bruno et al., 2016) 23 2-4-3. ساختار دهی مجدد بانک ها با رویکرد ادغام: یک مدل مکان زدایی ظزفیت دار با بستن و تغییر اندازه (Ruiz-hernández, Gómez and López-pascual, 2014) 24 2-4-4. ادغام و ترکیب مدارس در هند برای بهبود حاکمیت (Bhatnagar and Bolia, 2019) 26 2-5. صف و ازدحام در مکان یابی: 28 2-6. عدالت و برابری در مکان یابی 31 2-7. تحلیل پوششی داده ها 34 2-7-1. تحلیل پوششی داده ها در صنعت بانکداری 36 2-7-2. تعدد معیار ها در ارزیابی عملکرد بانک ها 37 2-7-3. کاهش معیار / متغیر برای ارزیابی بانک ها 38 2-8. جمع بندی فصل دوم 43 فصل3. روش شناسی تحقیق 46 3-1. مقدمه 47 3-2. نگاه کلی به ادغام بانک های مطرح شده 47 3-3. تعیین اهمیت شعب با تحلیل پوششی داده ها 49 3-3-1. شناسایی ورودی ها و خروجی ها 49 3-3-2. ذی نغعان و نیازمندی آن ها 51 3-3-3. استخراج ورودی ها و خروجی ها از هر طیف خبرگان 53 3-3-4. انتخاب نحوه اجرای روش DEA 54 3-3-5. کاهش ورودی ها و خروجی ها 58 3-4. مدل مکان زدایی تسهیلات 60 3-4-1. مدل 1 : مدل ادغام شعب با هدف نگهداشت حداکثری پرسنل 60 3-4-2. مدل 2 : ادغام شعب با هدف کاهش هزینه و افزایش عدالت )کارایی و عدالت) 64 3-4-3. مدل 3 : ادغام شعب با هدف کاهش هزینه، افزایش امتیاز کارایی کل و افزایش عدالت )کارایی و عدالت) 66 3-4-4. مدل 4 : ادغام تسهیلات با در نظر گرفتن شرایط اردحام) صف( و رویکرد عادلانه 66 3-5. حل مسئله 71 3-5-1. روش اپسیلون محدودیت 71 3-5-2. الگوریتم های فرا ابتکاری 73 3-5-3. تشریح الگوریتم NSGA-II بر اساس شبه کد 73 3-5-4. سناریوی تلفیق، مرتبسازی و حذف 74 3-6. جمع بندی فصل 3 83 فصل4. تجزیه و تحلیل داده ها 85 4-1. مقدمه 86 4-2. تعیین اهمیت شعب 86 4-3. اجرای مدل تحلیل پوششی داده ها 90 4-4. نتایج مربوط به مدل اول 92 4-4-1.مثال 1 92 4-4-2. مثال 2 93 4-4-3. تحلیل حساسیت مدل اول 96 4-4-4. بررسی اثر ضریب عدالت ( درجه عضویت محدودیت فازی) روی تابع هدف مدل اول 98 4-5. مدل دوم 99 4-5-1. مدل دوم و حل با روش اپسیلون محدودیت (مثال موردی) 99 4-5-2. تحلیل حساسیت مدل دوم 103 4-6. حل مدل سوم با روش اپسیلون محدودیت 104 4-6-1. مثال اول مدل سوم 105 4-6-2. مثال دوم مدل 3 107 4-6-3. اعتبار سنجی و تحلیل حساسیت مدل 3 108 4-7. مدل چهارم 110 4-7-1. مثال یک مدل چهارم (40 تسهیل و 5 برند) 111 4-7-2. مثال دو مدل چهارم ( 77 تسهیل و 5 برند) 113 4-7-3. تنظیم پارامتر برای الگوریتم 114 4-8. جمع بندی فصل 4 119 فصل5. جمع بندی و نتیجه گیری 122 5-1. مقدمه 123 5-2. مرور اجمالی بر ساختار تحقیق 123 5-3. آموزه های مدیریتی 124 5-4. محدودیت های تحقیق 125 5-5. پیشنهاداتی برای تحقیقات آتی 126

Aduda, J. and Kingoo, N. (2012) ‘The Relationship between Electronic Banking and Financial Performance among Commercial Banks in Kenya’, Journal of Finance and Investment Analysis, 1(3), pp. 99-118. Afshari, H. et al. (2014) ‘Optimizing multi-objective dynamic facility location decisions within green distribution network design’, Procedia CIRP, 17, pp. 675-679. doi: 10.1016/j.procir.2014.01.147. Amirteimoori, A. and Emrouznejad, A. (2012) ‘Optimal input/output reduction in production processes’, Decision Support Systems, 52(3), pp. 742-747. doi: 10.1016/j.dss.2011.11.020. An, S. et al. (2015) ‘Reliable Emergency Service Facility Location under Facility Disruption, En-Route Congestion and In-Facility Queuing’, Transportation Research Part E: Logistics and Transportation Review, 82, pp. 199-216. Andersen, P. and Petersen, N. C. (1993) ‘A Procedure for Ranking Efficient Units in Data Envelopment Analysis’, Management Science, 39(10), pp. 1261-1264. doi: 10.1287/mnsc.39.10.1261. Bagherinejad, J. and Fakhrzad, P. (2012) ‘A Model for Multilevel Location-Allocation for Market Capture in Congestion System’, International Conference on Industrial Engineering and Operations Management Istanbul, Turkey July 3 – 6, pp. 1678-1683. Banker, A. R. D., Charnes, A. and Cooper, W. W. (1984) ‘Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis’, Management Science, 30(9), pp. 1078-1092. doi: 10.1287/mnsc.30.9.1078. Basar, A., Kabak, Ö. and Ilker Topcu, Y. (2017) ‘A Decision Support Methodology for Locating Bank Branches: A Case Study in Turkey’, International Journal of Information Technology and Decision Making, 16(1), pp. 59-86. doi: 10.1142/S0219622016500462. Batta, R. (1988) ‘Single Server Queueing-Location Models With Rejection.’, Transportation Science, 22(3), pp. 209-216. doi: 10.1287/trsc.22.3.209. Batta, R. (1989a) ‘A queueing-location model with expected service time dependent queueing disciplines’, European Journal of Operational Research, 39(2), pp. 192-205. doi: 10.1016/0377-2217(89)90192-6. Batta, R. (1989b) ‘A queueing-location model with expected service time dependent queueing disciplines’, European Journal of Operational Research, 39(2), pp. 192-205. doi: 10.1016/0377-2217(89)90192-6. Batta, R., Lejeune, M. and Prasad, S. (2014) ‘Public facility location using dispersion, population, and equity criteria’, European Journal of Operational Research, 234(3), pp. 819-829. doi: 10.1016/j.ejor.2013.10.032. Benítez-Peña, S., Bogetoft, P. and Romero Morales, D. (2020) ‘Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach’, Omega (United Kingdom), 96. doi: 10.1016/j.omega.2019.05.004. Berger, A. N. and Humphrey, D. B. (1997) ‘Efficiency of financial institutions: International survey and directions for future research’, European Journal of Operational Research, 98(2), pp. 175-212. doi: 10.1016/S0377-2217(96)00342-6. Berman, O. and Mandowsky, R. R. (1986) ‘Location-allocation on congested networks’, European Journal of Operational Research, 26(2), pp. 238-250. doi: 10.1016/0377-2217(86)90185-2. Bhatnagar, A. and Bolia, N. B. (2019) ‘Improved governance of Indian school system through school consolidation’, Journal of Policy Modeling, 41(6), pp. 1160-1178. doi: 10.1016/j.jpolmod.2019.05.001. Bhatnagar, A. and Bolia, N. B. (2022) ‘A sustainable decision-making framework for school consolidation policy’, Regional Science Policy and Practice, (October 2021), pp. 1-27. doi: 10.1111/rsp3.12530. Bhaumik, pradib k. (2010) ‘Optimal shrinking of the distribution chain‌: the facilities delocation decision’, International Journal of Systems Science, (March 2015), pp. 37-41. doi: 10.1080/00207720903326860. Björklund, M. and Johansson, H. (2018) ‘Urban consolidation centre – a literature review, categorisation, and a future research agenda’, International Journal of Physical Distribution and Logistics Management, 48(8), pp. 745-764. doi: 10.1108/IJPDLM-01-2017-0050. Boffey, B., Galvão, R. and Espejo, L. (2007) ‘A review of congestion models in the location of facilities with immobile servers’, European Journal of Operational Research, 178(3), pp. 643-662. doi: 10.1016/j.ejor.2006.04.044. Bollen, K. A. (1989) Structural Equations with Latent Variables. United States of America: John Wiley &, Sons. Braveman, P. and Gruskin, S. (2003) ‘Defining equity in health’, Journal of Epidemiology and Community Health, 57(4), pp. 254-258. doi: 10.1136/jech.57.4.254. Bruno, G. et al. (2016) ‘Institutions and facility mergers in the Italian education system: Models and case studies’, Socio-Economic Planning Sciences, 53, pp. 23-32. doi: 10.1016/j.seps.2015.11.001. Bryl, V., Giorgini, P. and Mylopoulos, J. (2009) ‘Designing socio-technical systems: From stakeholder goals to social networks’, Requirements Engineering, 14(1), pp. 47-70. doi: 10.1007/s00766-008-0073-5. Burkey, M. L. et al. (2017) ‘The impact of hospital closures on geographical access: Evidence from four southeastern states of the United States’, Operations Research Perspectives, 4, pp. 56-66. doi: 10.1016/j.orp.2017.03.003. Burkey, M. L., Bhadury, J. and Eiselt, H. A. (2012) ‘A location-based comparison of health care services in four U.S. states with efficiency and equity’, Socio-Economic Planning Sciences, 46(2), pp. 157-163. doi: 10.1016/j.seps.2012.01.002. Calik, H. and Tansel, B. C. (2013) ‘Double bound method for solving the p -center location problem’, Computers and Operation Research, 40(12), pp. 2991-2999. doi: 10.1016/j.cor.2013.07.011. Calomiris, C. W. (1999) ‘Gauging the efficiency of bank consolidation during a merger wave’, 23. Canel, C. et al. (2001) ‘An algorithm for the capacitated, multi-commodity multi-period facility location problem’, Computers and Operations Research, 28(5), pp. 411-427. doi: 10.1016/S0305-0548(99)00126-4. Carayannis, E. G., Grigoroudis, E. and Goletsis, Y. (2016) ‘A multilevel and multistage efficiency evaluation of innovation systems: A multiobjective DEA approach’, Expert Systems with Applications, 62, pp. 63-80. doi: 10.1016/j.eswa.2016.06.017. Chaleshtori, A. E. et al. (2019) ‘A multi-layer congested facility location problem with consideration of impatient customers in a queuing system’, IFAC-PapersOnLine, 52(13), pp. 2279-2284. doi: 10.1016/j.ifacol.2019.11.545. Charnes, A., Cooper, W. W. and Rhodes, E. (1978) ‘Measuring the efficiency of decision making units’, European Journal of Operational Research, 2(6), pp. 429-444. doi: 10.1016/0377-2217(78)90138-8. Cho, C. (1998) ‘An Equity-efficiency Trade-off Model for the Optimum Location of Medical Care Facilities’, Socio-Econ. Plann. Sci., 32(2), pp. 99-112. doi: 10.1016/S0038-0121(97)00007-4. Church, R. and Revelle, C. (1992) ‘The maximal covering location problem’, Papers in Regional Science, 71(3), pp. 199-215. doi: 10.1007/BF01434264. Cooper, W. W., Sciford, L. M. and Tone, K. (2007) DATA ENVELOPMENT ANALYSIS A Comprehensive Text with Models , Applications , References Second Edition. New York, USA: Springer Science+,Business Media. Daskin, M. S. (1995) Network and Discrete Location, Network and Discrete Location. Hoboken, New Jersey: John Wiley &, Sons. doi: 10.1002/9781118032343. David SHERMAN, H. and Gold, F. (1985) ‘Evaluation with Data Envelopment Analysis’, Journal of Banking and Finance, 9, pp. 297-315. Delong, G. L. (2001) ‘Stockholder gains from focusing versus diversifying bank mergers’, 59, pp. 221-252. Ebrahimi, A., Hossini-nasab, H. and Zahmatkesh, A. (2015) ‘Multi-Period Hub Set Covering Problems with Flexible Radius: a Modified Genetic Solution’, Applied Mathematical Modelling. doi: 10.1016/j.apm.2015.09.064. Eiselt, H. A. and Marianov, V. (2015) Applications of Location Analysis. Switzerland: Springer Science+,Business Media. Emrouznejad, A. and Yang, G. liang (2018) ‘A survey and analysis of the first 40 years of scholarly literature in DEA: 1978-2016’, Socio-Economic Planning Sciences, 61, pp. 4-8. doi: 10.1016/j.seps.2017.01.008. Eskelinen, J. (2016) ‘Comparison of variable selection techniques for data envelopment analysis in a retail bank’, European Journal of Operational Research, 259(2), pp. 778-788. doi: 10.1016/j.ejor.2016.11.009. Fageha, M. K. and Aibinu, A. A. (2013) ‘Managing Project Scope Definition to Improve Stakeholders’ Participation and Enhance Project Outcome’, Procedia – Social and Behavioral Sciences, 74, pp. 154-164. doi: 10.1016/j.sbspro.2013.03.038. Faramarzi, G. R. et al. (2015) ‘New network data envelopment analysis approaches: An application in measuring sustainable operation of combined cycle power plants’, Journal of Cleaner Production, 108. doi: 10.1016/j.jclepro.2015.06.065. Fethi, M. D. and Pasiouras, F. (2010) ‘Assessing bank efficiency and performance with operational research and artificial intelligence techniques‌: A survey’, European Journal of Operational Research, 204(2), pp. 189-198. doi: 10.1016/j.ejor.2009.08.003. Folger, R. and Konovsky, mary A. (1994) ‘Effects of Procedural and Distributive Justice on Reactions to a Selection System’, Academy of Management Journal, 32(1), pp. 115-130. doi: 10.1037/0021-9010.79.5.691. Friedman, L. and Sinuany-Stern, Z. (1998) ‘Combining ranking scales and selecting variables in the DEA context: The case of industrial branches’, Computers and Operations Research, 25(9), pp. 781-791. doi: 10.1016/S0305-0548(97)00102-0. Ghaderi, A. and Jabalameli, M. S. (2013) ‘Modeling the budget-constrained dynamic uncapacitated facility location-network design problem and solving it via two efficient heuristics: A case study of health care’, Mathematical and Computer Modelling, 57(3-4), pp. 382-400. doi: 10.1016/j.mcm.2012.06.017. Van Ginkel, K. C. H. et al. (2020) ‘Climate change induced socio-economic tipping points: Review and stakeholder consultation for policy relevant research’, Environmental Research Letters, 15(2). doi: 10.1088/1748-9326/ab6395. Güden, H. and Süral, H. (2019) ‘The dynamic p -median problem with mobile facilities’, Computers &, Industrial Engineering, 135(June), pp. 615-627. doi: 10.1016/j.cie.2019.06.024. Guh, W. Y. et al. (2013) ‘Effects of organizational justice on organizational citizenship behaviors: Mediating effects of institutional trust and affective commitment’, Psychological Reports, 112(3), pp. 818-834. doi: 10.2466/01.21.PR0.112.3.818-834. Gunawardane, G. (1982) ‘Dynamic versions of set covering type public facility location problems’, European Journal of Operational Research, 10(2), pp. 190-195. doi: 10.1016/0377-2217(82)90159-X. Guo, C. et al. (2017) ‘Multistage network DEA: Decomposition and aggregation weights of component performance’, Computers and Industrial Engineering, 113, pp. 64-74. doi: 10.1016/j.cie.2017.08.019. Habib, S. et al. (2013) ‘A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem’, Applied Soft Computing Journal, 13(4), pp. 1728-1740. doi: 10.1016/j.asoc.2012.12.016. Habib, S. et al. (2014) ‘A multi-objective model for facility location – allocation problem with immobile servers within queuing framework’, COMPUTERS &, INDUSTRIAL ENGINEERING, 74, pp. 1-10. doi: 10.1016/j.cie.2014.04.018. Hajipour, V. et al. (2014) ‘A multi-objective harmony search algorithm to optimize multi-server location-allocation problem in congested systems’, Computers and Industrial Engineering, 72(1), pp. 187-197. doi: 10.1016/j.cie.2014.03.018. Hajipour, V. et al. (2015) ‘Multi-Objective Multi-Layer Congested Facility Location-Allocation Problem Optimization with Pareto-based Meta-heuristics’, Applied Mathematical Modelling. doi: 10.1016/j.apm.2015.12.013. Hajipour, V., Khodakarami, V. and Tavana, M. (2014) ‘The Redundancy Queuing-Location-Allocation Problem‌: A Novel Approach’, IEEE TRANSACTIONS ON ENGINEERINGMANAGEMENT, 61(3), pp. 534-544. Hakimi, S. L. (1964) ‘Optimal locations of switching centers and the absolute centers and medians of a graph’, Operations Research, pp. 450-459. Henriques, I. C. et al. (2018) ‘Efficiency in the Brazilian banking system using data envelopment analysis’, Future Business Journal, 4(2), pp. 157-178. doi: 10.1016/j.fbj.2018.05.001. Hosseinzadeh, A. and Bozorgi-amiri, A. (2018) ‘Equitable multi objective model for public facility location using RLTP technique’, 11(2), pp. 101-113. Husted, B. W. (1998) ‘Organizational justice and the management of stakeholder relations’, Journal of Business Ethics, 17(6), pp. 643-651. doi: 10.5840/iabsproc199454. Izadikhah, M., Tavana, M. and Di, D. (2017) ‘A novel two-stage DEA production model with freely distributed initial inputs and shared intermediate outputs’, Expert Systems With Applications, 0, pp. 1-18. doi: 10.1016/j.eswa.2017.11.005. Jena, S. D., Cordeau, J. and Gendron, B. (2015) ‘Solving a Dynamic Facility Location Problem with Partial Closing and Reopening’, Computers and Operation Research. doi: 10.1016/j.cor.2015.10.011. Jenkins, L. and Anderson, M. (2003) ‘A multivariate statistical approach to reducing the number of variables in data envelopment analysis’, European Journal of Operational Research, 147(1), pp. 51-61. doi: 10.1016/S0377-2217(02)00243-6. Jiang, H. et al. (2011) ‘Multi-path QoS-Aware Web Service Composition Using Variable Length Choromosome Genetic Algorithm’, 10(1), pp. 113-119. Jin, M. et al. (2019) ‘Evaluating the spatial accessibility and distribution balance of multi-level medical service facilities’, International Journal of Environmental Research and Public Health, 16(7). doi: 10.3390/ijerph16071150. Johnson, G., Scholes, K. and Whittington, R. (2008) exploring Corporate strategy‌: text and cases. eighth. england: Prentice Hall. Kao, C. and Hung, H. T. (2005) ‘Data envelopment analysis with common weights: The compromise solution approach’, Journal of the Operational Research Society, 56(10), pp. 1196-1203. doi: 10.1057/palgrave.jors.2601924. Kariv, O and Hakimi, S. l. (1979) ‘AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. I: THE p-CENTERS’, Society for Industrial and Applied Mathematics, 37(3), pp. 513-538. Kariv, O. and Hakimi, S. L. (1979) ‘ALGORITHM APPROACH TO NETWORK LOCATION PROBLEMS – 2. THE p-MEDIANS.’, SIAM Journal on Applied Mathematics, 37(3), pp. 539-560. doi: 10.1137/0137041. Karsu, Ö. and Morton, A. (2015) ‘Inequity averse optimization in operational research’, European Journal of Operational Research, 245(2), pp. 343-359. doi: 10.1016/j.ejor.2015.02.035. Kostreva, M. M. and Ogryczak, W. (1999) ‘Linear optimization with multiple equitable criteria’, RAIRO – Operations Research, 33(3), pp. 275-297. doi: 10.1051/ro:1999112. Lejeune, M. A. and Prasad, S. Y. (2013) ‘Effectiveness – Equity Models for Facility Location Problems on Tree Networks’, Networks, 64(4), pp. 243-254. doi: 10.1002/net.21510. Li, Y. et al. (2017) ‘Variable selection in data envelopment analysis via Akaike’s information criteria’, Annals of Operations Research, 253(1), pp. 453-476. doi: 10.1007/s10479-016-2382-2. Lin, Cheng-chang and Lin, Chuan-chih (2018) ‘The p -center flow-refueling facility location problem’, Transportation Research Part B, 118, pp. 124-142. doi: 10.1016/j.trb.2018.10.008. Liu, J. S. et al. (2013) ‘A survey of DEA applications’, Omega (United Kingdom), 41(5), pp. 893-902. doi: 10.1016/j.omega.2012.11.004. Luo, X. (2003) ‘Evaluating the profitability and marketability efficiency of large banks: An application of data envelopment analysis’, Journal of Business Research, 56(8), pp. 627-635. doi: 10.1016/S0148-2963(01)00293-4. Marianov, V., Ríos, M. and Taborga, P. (2004) ‘Finding locations for public service centres that compete with private centres: Effects of congestion’, Papers in Regional Science, 83(4), pp. 631-648. doi: 10.1007/s10110-004-0219-x. Marianov, V. and Serra, D. (1994) ‘Probabilistic maximal covering location models for congested systems’, Economics Working Papers, 38(3), pp. 401-424. Marianov, V. and Serra, D. (1998) ‘Probabilistic maximal covering location models for congested systems’, JOURNAL OF REGIONAL SCIENCE, 38(3), pp. 401-424. Marianov, V. and Serra, D. (2001) ‘Hierarchical location-allocation models for congested systems’, European Journal of Operational Research, 135(1), pp. 195-208. doi: 10.1016/S0377-2217(00)00314-3. Marianov, V. and Serra, D. (2002a) ‘Location-allocation of multiple-server service centers with constrained queues or waiting times’, Annals of Operations Research, 111, pp. 35-50. doi: 10.1023/A:1020989316737. Marianov, V. and Serra, D. (2002b) ‘Location – Allocation of Multiple-Server Service Centers with Constrained Queues orWaiting Times’, Annals of Operations Research, (1000602), pp. 35-50. Marsh, M. T. and Schilling, D. A. (1994) ‘Equity measurement in facility location analysis: A review and framework’, European Journal of Operational Research, 74(1), pp. 1-17. doi: 10.1016/0377-2217(94)90200-3. McLay, L. A. and Mayorga, M. E. (2013) ‘A dispatching model for server-to-customer systems that balances efficiency and equity’, Manufacturing and Service Operations Management, 15(2), pp. 205-220. doi: 10.1287/msom.1120.0411. Megiddo, N. and Supowit, K. J. (1984) ‘ON THE COMPLEXITY OF SOME COMMON GEOMETRIC LOCATION PROBLEMS’, Society for Industrial and Applied Mathematics, 13(1), pp. 182-196. Mesa, J. A., Puerto, J. and Tamir, A. (2003) ‘Improved algorithms for several network location problems with equality measures’, Discrete Applied Mathematics, 130, pp. 437-448. doi: 10.1016/S0166-218X(02)00599-1. Moghadas, F. M. and Kakhki, Taghizadeh, H. (2006) ‘Maximal covering location-allocation problem with M/M/k queuing system and side constraints’, Iranian Journal of Operations Research, 2(2), pp. 1-16. Mohammadi, M., Jolai, F. and Rostami, H. (2011) ‘An M / M / c queue model for hub covering location problem’, Mathematical and Computer Modelling, 54(11-12), pp. 2623-2638. doi: 10.1016/j.mcm.2011.06.038. Mokhtarzadeh, M. et al. (2021) ‘Engineering Applications of Artificial Intelligence A hybrid of clustering and meta-heuristic algorithms to solve a p -mobile hub location – allocation problem with the depreciation cost of hub facilities’, Engineering Applications of Artificial Intelligence, 98(December 2020), p. 104121. doi: 10.1016/j.engappai.2020.104121. Morrill, R. L. (1973) ‘efficiency and equity of optimum location models’, Antipode , university of Washington, (1), pp. 41-46. doi: 10.1111/j.1467-8330.1974.tb00582.x. Morrill, R. L. and Symons, J. (1977) ‘Efficiency and Equity Aspects of Optimum Location’, Geographical Analysis, 9(3), pp. 215-225. doi: 10.1111/j.1538-4632.1977.tb00575.x. Morrison, P. S. and O’Brien, R. (2001) ‘Bank branch closures in New Zealand: The application of a spatial interaction model’, Applied Geography, 21(4), pp. 301-330. doi: 10.1016/S0143-6228(01)00014-5. Musharavati, F. and Hamouda, A. M. S. (2015) ‘Multiple parts process planning in serial-parallel flexible flow lines: part II—solution method based on genetic algorithms with fixed- and variable-length chromosomes’, Int J Adv Manuf Technol, 77, pp. 1105-1143. doi: 10.1007/s00170-014-6459-2. Nataraja, N. R. and Johnson, A. L. (2011) ‘Guidelines for using variable selection techniques in data envelopment analysis’, European Journal of Operational Research, 215(3), pp. 662-669. doi: 10.1016/j.ejor.2011.06.045. ogryczak, wlodzimierz (2000) ‘inequality measures and equitable approachs to location problems’, European Journal of Operational Research, 122(2), pp. 374-391. Ogryczak, W. (1999) ‘On the distribution approach to location problems’, Computers and Industrial Engineering, 37(3), pp. 595-612. doi: 10.1016/S0360-8352(00)00025-5. Ohsato, S. and Takahashi, M. (2015) ‘Management Efficiency in Japanese Regional Banks‌: A Network DEA’, Procedia – Social and Behavioral Sciences, 172, pp. 511-518. doi: 10.1016/j.sbspro.2015.01.394. Paradi, J. C., Rouatt, S. and Zhu, H. (2011) ‘Two-stage evaluation of bank branch efficiency using data envelopment analysis’, Omega, 39(1), pp. 99-109. doi: 10.1016/j.omega.2010.04.002. Paradi, J. C. and Zhu, H. (2013) ‘A survey on bank branch efficiency and performance research with data envelopment analysis’, Omega (United Kingdom), 41(1), pp. 61-79. doi: 10.1016/j.omega.2011.08.010. Paradi, J. C., Zhu, H. and Edelstein, B. (2012) ‘Identifying managerial groups in a large Canadian bank branch network with a DEA approach’, European Journal of Operational Research, 219(1), pp. 178-187. doi: 10.1016/j.ejor.2011.12.022. Pasandideh, S. H. R., Niaki, S. T. A. and Hajipour, V. (2013) ‘A multi-objective facility location model with batch arrivals: Two parameter-tuned meta-heuristic algorithms’, Journal of Intelligent Manufacturing, 24(2), pp. 331-348. doi: 10.1007/s10845-011-0592-7. Poonthalir, G. and Nadarajan, R. (2019) ‘Green vehicle routing problem with queues’, Expert Systems with Applications, 138, p. 112823. doi: 10.1016/j.eswa.2019.112823. Portela, M. C. A. S., Thanassoulis, E. and Simpson, G. (2004) ‘Negative data in DEA: A directional distance approach applied to bank branches’, Journal of the Operational Research Society, 55(10), pp. 1111-1121. doi: 10.1057/palgrave.jors.2601768. Qiongbing, Z. and Ding lixin (2016) ‘A New Crossover Mechanism for Genetic Algorithms with Variable-length Chromosomes for Path Optimization Problems ACCEPTED’, Expert Systems With Applications Received, 60, pp. 183-189. doi: 10.1016/j.eswa.2016.04.005. Rahimi, Y. et al. (2016) ‘Multi-objective hub network design under uncertainty considering congestion: An M/M/c/K queue system’, Applied Mathematical Modelling, 40(5-6), pp. 4179-4198. doi: 10.1016/j.apm.2015.11.019. Rahmati, S. H. A. et al. (2014) ‘A multi-objective model for facility location-allocation problem with immobile servers within queuing framework’, Computers and Industrial Engineering, 74(1), pp. 1-10. doi: 10.1016/j.cie.2014.04.018. Raykov, T. and Marcoulides, G. A. M. (2006) A First Course in Structural Equation Modeling. second, LAWRENCE ERLBAUM ASSOCIATES. second. London. ReVelle, C., Murray, A. T. and Serra, D. (2007) ‘Location models for ceding market share and shrinking services’, Omega, 35(5), pp. 533-540. doi: 10.1016/j.omega.2005.10.001. ReVelle, C. s. and Eiselt, H. A. (2005) ‘Location analysis: A synthesis and survey’, European Journal of Operational Research, 165, pp. 1-19. doi: 10.1016/j.ejor.2003.11.032. ReVelle, C., Toregas, C. and Falkson, L. (1976) ‘Applications of the Location Set-covering Problem’, Geographical Analysis, 8(1), pp. 65-76. doi: 10.1111/j.1538-4632.1976.tb00529.x. Rexha, N., Kingshott, R. P. J. and Shang Shang, A. (2003) ‘The impact of the relational plan on adoption of electronic banking’, Journal of Services Marketing, 17(1), pp. 53-67. doi: 10.1108/08876040310461273. Rodrigues Monteiro, M. S. and Fontes, D. B. M. M. (2014) ‘Locating and Sizing Bank-Branches by Opening , Closing or Maintaining Facilities Locating and sizing bank-branches by opening , closing or maintaining facilities’, (December). doi: 10.1007/3-540-32539-5. Ruiz-hernández, D., Gómez, D. D. and López-pascual, J. (2014) ‘Restructuring Bank Networks after Mergers and Acquisitions‌: A Capacitated Delocation Model for Closing and Resizing Branches .’, Computers and Operation Research. doi: 10.1016/j.cor.2014.04.011. Sadidi, M. et al. (2018) ‘Use of Partial Least Squares – Structural Equation Modeling for Identifying the Most Important Variables via Application of Data Envelopment Analysis’, Journal of Archives in Military Medicine, 6(1), pp. 1-9. doi: 10.5812/jamm.67114.Research. Seifbarghy, M. and Mansouri, A. (2016) ‘Modelling and solving a congested facility location problem considering systems’ and customers’ objectives’, International Journal of Industrial and Systems Engineering, 22(3), pp. 281-304. doi: 10.1504/IJISE.2016.074707. Shavandi, H. and Mahlooji, H. (2006) ‘A fuzzy queuing location model with a genetic algorithm for congested systems’, Applied Mathematics and Computation, 181(1), pp. 440-456. doi: 10.1016/j.amc.2005.12.058. Shavarani, S. M. et al. (2019) ‘A congested capacitated multi-level fuzzy facility location problem: An efficient drone delivery system’, Computers and Operations Research, 108, pp. 57-68. doi: 10.1016/j.cor.2019.04.001. SHORTLE, john f et al. (2018) FUNDAMENTALS OF QUEUEING THEORY. fifth. John Wiley and Sons. Srinivas, N. and Deb, K. (1994) ‘Multiobjective optimization using nondominated sorting in genetic algorithms’, Evolutionary Computation, 2(3), pp. 221-248. Sterle, C., Sforza, A. and Esposito Amideo, A. (2016) ‘Multi-period location of flow intercepting portable facilities of an intelligent transportation system’, Socio-Economic Planning Sciences, 53, pp. 4-13. doi: 10.1016/j.seps.2016.01.001. Subramanyam, T. et al. (2021) ‘A new stepwise method for selection of input and output variables in data envelopment analysis’, Journal of Mathematical and Computational Science, 11(1), pp. 703-715. doi: 10.28919/jmcs/5205. Subramanyam T (2016) ‘Selection of Input-Output Variables in Data Envelopment Analysis -Indian Commercial Banks’, International Journal of Computer &, Mathematical Sciences IJCMS ISSN, 5(6), pp. 2347-8527. Symons, J. G. (1971) ‘Some Comments on Equity and Efficiency in Public Facility Location Models’, Antipode, 3(1), pp. 54-67. doi: 10.1111/j.1467-8330.1971.tb00542.x. Taheri otaghsara, mohammad reza, Hasan-pour, hossein ali and Mikaeli, F. (2020) A model for designing supply-distribution network in frozen food supply chain under uncertainty. Imam Hossein Comprehensive University. Toloo, M., Keshavarz, E. and Hatami-Marbini, A. (2021) ‘Selecting data envelopment analysis models: A data-driven application to EU countries’, Omega (United Kingdom), 101, p. 102248. doi: 10.1016/j.omega.2020.102248. Tone, K. and Tsutsui, M. (2014) ‘Dynamic DEA with network structure: A slacks-based measure approach’, Omega (United Kingdom), 42(1), pp. 124-131. doi: 10.1016/j.omega.2013.04.002. Ueda, T. and Hoshiai, Y. (1997) ‘Application of principal component analysis for parsimonious summarization of DEA inputs and/or outputs’, Journal of the Operations Research Society of japan, 40(4), pp. 466-478. Verma, S., Pant, M. and Snasel, V. (2021) ‘A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems’, IEEE Access, 9(April), pp. 57757-57791. doi: 10.1109/ACCESS.2021.3070634. Villanueva-Cantillo, J. and Munoz-Marquez, M. (2021) ‘Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis’, European Journal of Operational Research, 290(2), pp. 657-670. doi: 10.1016/j.ejor.2020.08.021. Wang, Q. et al. (2003) ‘Budget constrained location problem with opening and closing of facilities’, Computers and Operations Research, 30(13), pp. 2047-2069. doi: 10.1016/S0305-0548(02)00123-5. Wang, T. C. and Lin, Y. L. (2009) ‘Applying the consistent fuzzy preference relations to select merger strategy for commercial banks in new financial environments’, Expert Systems with Applications, 36(3 PART 2), pp. 7019-7026. doi: 10.1016/j.eswa.2008.08.023. Wang, W. K., Lu, W. M. and Liu, P. Y. (2014) ‘A fuzzy multi-objective two-stage DEA model for evaluating the performance of US bank holding companies’, Expert Systems with Applications, 41(9), pp. 4290-4297. doi: 10.1016/j.eswa.2014.01.004. Winch, G. M. (2004) ‘Managing Project Stakeholders’, in The Wiley Guide to Managing Projects. 1st edn. John Wiley &, Sons, pp. 321-339. doi: 10.1002/9780470172391.ch14. Wu, D. (Dash), Yang, Z. and Liang, L. (2006) ‘Efficiency analysis of cross-region bank branches using fuzzy data envelopment analysis’, Applied Mathematics and Computation, 181(1), pp. 271-281. doi: 10.1016/j.amc.2006.01.037. Yavari, M. and Mousavi-Saleh, M. (2019) ‘Restructuring hierarchical capacitated facility location problem with extended coverage radius under uncertainty’, Operational Research, (0123456789). doi: 10.1007/s12351-019-00460-w. Yu, M. et al. (2019) ‘Measuring Taiwanese bank performance: A two-system dynamic network data envelopment analysis approach’, Omega, p. 102145. doi: 10.1016/j.omega.2019.102145. Zarghami, S. and Amiri, M. (2021) ‘A hybrid approach for performance evaluation and ranking of divisional structure organisations’, international journal advanced operations management, 13(4), pp. 431-458. doi: 10.1504/IJAOM.2021.120780. Zarrinpoor, N., Fallahnezhad, M. S. and Pishvaee, M. S. (2017) ‘Design of a reliable hierarchical location-allocation model under disruptions for health service networks: A two-stage robust approach’, Computers and Industrial Engineering, 109, pp. 130-150. doi: 10.1016/j.cie.2017.04.036. Zhang, L. and Rushton, G. (2008) ‘Optimizing the size and locations of facilities in competitive multi-site service systems’, Computers and Operations Research, 35(2), pp. 327-338. doi: 10.1016/j.cor.2006.03.002. Zhang, Y., Berman, O. and Verter, V. (2009) ‘Incorporating congestion in preventive healthcare facility network design’, European Journal of Operational Research, 198(3), pp. 922-935. doi: 10.1016/j.ejor.2008.10.037. Zohrehbandian, M., Makui, A. and Alinezhad, A. (2010) ‘A compromise solution approach for finding common weights in DEA: An improvement to Kao and Hung’s approach’, Journal of the Operational Research Society, 61(4), pp. 604-610. doi: 10.1057/jors.2009.4.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

نوزده − 10 =